
Designing Ubiquitous Applications: Proposal of a
Specification Environment

Isabel Cafezeiro
Departamento de Ciência da Computação

Universidade Federal Fluminense
Rua Passo da Patria, 156 - Bloco E - 3o andar,

Boa Viagem, 24210-240, Niterói, Brasil
isabel@dcc.ic.uff.br

José Viterbo, Alexandre Rademaker,
Edward Hermann Haeusler,

Markus Endler
Departamento de Informática

Pontifícia Universidade Católica
do Rio de Janeiro

Rua Marquês de São Vicente 225, Gávea,
22453-900, Rio de Janeiro, Brasil

{viterbo, arademaker, hermann,
endler}@inf.puc-rio.br

ABSTRACT
In ubiquitous applications, where the meaning of an entity,
such as a user or service, depends on environment-specific
constraints and dynamic changes in the environment have to
be considered in all stages of development, the separation be-
tween the system’s behaviour and its context representation
(a.k.a. context model) is essential for facilitating the devel-
opment of such inherently complex systems. At the same
time, because of its well-known benefits, a formal specifica-
tions should be considered not only for describing the sys-
tem’s behaviour, but also the corresponding context model.
Considering this, we propose in this paper an environment
to support context modelling through formal specification.
For this sake, we adopt the algebra of contextualized enti-
ties proposed in [2, 3] and define levels of abstractions over
its diagrams, enabling a stepwise construction of modular
specifications. The overall goal is to reduce the gap between
the formal description of an ubiquitous application and its
implementation.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distrib-
uted Systems; F.3.1 [Logics and Meanings of Programs]:
Specifying and Verifying and Reasoning about Programs—
Specification techniques

General Terms
Design, Theory

Keywords
Context-awareness, Formal Specification, Ubiquitous Sys-
tems

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MUCS2009, June 15, 2009, Barcelona, Spain.
Copyright 2009 ACM 978-1-60558-579-6/09/06 ...$5.00.

1. INTRODUCTION
The adoption of a formal method or language usually

helps to reach a better understanding of the problem do-
main and contributes to clarify the concepts involved. More-
over, as a formalization is embedded in a wider theoretical
framework, with its theorems and results, by presenting an
application problem in terms of a more abstract theory it
is sometimes possible to adapt theoretic results to the ap-
plication problem, yielding interesting, and previously un-
foreseen, results, such as about the inherent complexity of
the problem at hand. Moreover, the effort to implement the
automatic generation of programs and validating properties
of programs are usually minimized within the theoretical
framework.

On the other hand, when we use a formal model we ab-
stract from some issues or entities which apparently seem
less relevant. However, in real systems, these issues might
well have a significant impact on the real system’s behavior,
and should ideally be accounted for. Hence there is always
a trade-off between the model’s degree of realism, its com-
plexity and the set of applicable results derived from the
model.

Considering the additional complexity of context-awareness,
where the meaning of an entity, such as a user or service,
depends on environment-specific constraints and dynamic
changes in the environment have to be taken into account
in all stages of development, we stress the importance of
considering a system (i.e. its behaviour) and the context
model as separate domains. This separation tends to gener-
ate appropriate representations for the information of con-
text, which therefore allows the design of simpler algorithms
to specify the behaviour of the system.

Thus, a formal treatment to context-awareness may con-
tribute with the field by providing a better understanding of
concepts and mechanisms, giving insights to implementation
decisions, making possible the anticipation of formal verifi-
cations to development time, suggesting new mechanisms of
software construction focusing the obtainment of trustwor-
thy systems, and finally, offering the possibility of adapting
results of the theoretical framework to the applied problem.

In this paper we adopt a formal algebra and propose an
environment for specifying ubiquitous systems with the goal
of reducing the gap between formalism and implementation.

This focus is present both in the algebra and in the design
of the environment:

The algebra ([2, 3, 1]) hides the theoretical framework
(Category Theory) under a suggestive terminology, takes
contextualization as a basic notion and proposes a small set
of useful operations to compose and decompose contextual-
ized entities. It also employs a homogeneous representation
of entities and contexts, and by emphasising their relation-
ships, yields a simple, modular and uniform formalization.

The environment takes advantage of the fact that the al-
gebra has a diagrammatic representation and split its dia-
grams in three levels of abstraction: diagram of devices and
applications, diagram of entities and diagram of ontologies.
These different levels are integrated and can be modified
at any time. Thus, small reminders, tips or annotations
that can be associated to elements of the diagrams can be,
through transformations, propagated and refined according
to the level of abstraction of each diagram.

1.1 Related Works
In [6], it is presented an approach where context is de-

termined by a network of agents (similar to our entities).
As in our approach, the net avoids restricting the context
to data/information that an entity can directly sense and
amplifies the notion of context to the extension of the net.
In [6], views are used to control the information available to
the agent. Every view is defined relative to an agent (refer-
ence agent) and with respect to its needs for resources from
and knowledge about its environment. This role is similar of
the links that connects entity and context in our approach.
However in [6] agents and contexts do not have a uniform
representation what causes a loss of flexibility.

CommUnity [8] is also based on Category Theory and em-
phasises the separation between application logic and con-
text modelling. As it evolved from a previous work on dis-
tribution and mobility in software architectures, it adopt
concepts of communication by channels and location vari-
ables, in what, strongly differs from the approach presented
here.

1.2 Previous Works
The approach we present in this paper is result of a re-

search project that evolved in the following way: In [1]
we investigated benefits and limitations of using ontologies
to achieve a high degree of semantic interoperability. We
adopted Category Theory as explicit formal framework and
formalized integration mechanisms over it. In [2] we pro-
posed a formal framework to contextualize ontologies. Talk-
ing about entities and their contexts as contextualized on-
tologies, we presented an algebra to compose and decompose
contextualized ontologies in several ways. Although serving
as formal basis over which the whole algebra was constructed
we presented algorithms and integration mechanisms with-
out explicit use of Category Theory. In [3] we tested the ap-
plicability of formal framework described in [2] in a scenario
of ubiquitous computing. Among its most relevant charac-
teristics, ubiquitous systems must respond dynamically to
changes in the environment, with litte or no human interfer-
ence. Hence, they must be context-aware, which means that
information about the context wherein they are supposed
to operate is key to their functioning. Interoperability has
been successfully modelled by Category Theory (as in formal
specification of systems [4] and in software architecture [5])

and contexts are the essence of the algebra presented in [2].
This justifies the matching between the chosen formalism
and the application paradigm.

In this paper we present the basis for the implementation
of an environment of specification showing how the algebra
can be split in three levels, and how information of these
levels can be integrated.

This paper is organized as follows: In section 2 we present
a brief description of the algebra. Section 3 is devoted to
the presentation of the environment. For this, we adopt a
concrete scenario (subsection 3.1) to be used as running ex-
ample and describe the modules of the environment (subsec-
tion 3.2). We then describe how these modules are related
(subsection 3.3). In section 4, we present an overview of
the formalization of the scenario. Finally, in section 5 we
conclude the paper.

2. BRIEF PRESENTATION OF THE ALGE-
BRA OF CONTEXTUALIZED ENTITIES

In this section we informally present the algebra of contex-
tualized entities and its constructs. For the reader interested
in the formal details of the algebra or in the algorithms for
computing them, we point previous works [1, 2, 3].

The algebra of contextualized entities is based on three
features: (i) a uniform representation of entities and con-
text, (ii) the independence of representation and (iii) the
semantics via net of relationships, where (i) provides inter-
operability and (ii) and (iii) stresses the emphasis on the
relationship. The three features together provide flexibility,
avoiding to determine a priori the role of a component as
entity or context; give support to modularity and reuse, as a
consequence of hiding the internal constitution of an entity;
and enable more accurate descriptions, as the meaning of the
subject being described is given by a net of relationships.

The algebra is defined over objects that we call contex-
tualized ontologies. These objects are composed by three
parts: an entity, a context and a link between them. Both
entity and context are represented by ontologies and the link
between them ensures that an entity is coherent with its con-
text: structure and relations of the entity is reflected in the
context; axioms of the entity, that are properly translated
to the context language, hold in the context.

When referring to ubiquitous computing, we can think
about the entity as being a computational device or a per-
son, represented by a computational device. The context
can be thought of as the environment where the entity oper-
ates, which can either be a physical environment or another
computational device. The link is the immersion of the en-
tity into its context – both entity and context are described
as ontologies. Under this model, information concerning ei-
ther physical or computational environment is treated as a
relevant part of the application, deserving its own represen-
tation. This representation is self contained and not con-
nected to the entities, what gives a high degree of mobility.

Example 1. Figure 1 shows a brief part of the scenario
that will be detailed in section 4. The simple ontology at left
represents a Professor Silva, who is recognized by his smart
phone code (SMP). Silva is the entity. The link maps Silva
in the context PUC-Rio, the institution where he works as
professor.

Figure 1: A contextualized entity: Silva at PUC-
Rio.

2.1 Operations on Contextualized Ontologies
The algebra is formed by two sets of dual operations de-

voted to compose and decompose contextualized ontologies
in several ways. For composing the operations are: align-
ment, context integration, collapsed union. For decompos-
ing the operations are: coalignment, entity integration and
relative intersection. The first set is devoted to produce the
union of parts, where some components may be collapsed ac-
cording to specific semantic identifications (semantic union).
The second set is devoted to produce intersection, also con-
sidering specific semantic identification (semantic intersec-
tion). These identifications are specified by the links associ-
ations.

All the operations have the general purpose of manipu-
lating information of ontologies in order to produce a co-
herent and concise body of information over which a par-
ticular device may operate. For this, the duals align and
coalign play the role of stablishing binary relations between
contexts or between entities. The duals context integration
and entity integration compose/decompose context/entity
respecting the entity/context. Finally, the duals collapsed
union and relative intersection perform the semantic union
/ semantic intersection of contextualized entities as a whole.

Alignment. (Figure 2-A) “Is the task of establishing a col-
lection of binary relations between the vocabularies of two
ontologies. Since a binary relation can itself be decomposed
into a pair of total functions from a common intermediate
source, we may describe the alignment of two ontologies O1

and O2 by means of a pair of ontology mappings from an
intermediate source ontology O.”[7] Concerning contextual-
ized ontologies, a situation where an entity has more than
one context is an alignment: C1 ← EMed → C2. By defining

Figure 2: (A) Alignment. (B) Context Integration.
(C) Collapsed Union.

Figure 3: (A) Coalignment. (B) Entity Integration.
(C) Relative Intersection.

a binary relation, the alignment makes possible the partial
mapping between contexts. This feature makes possible to
deal with situations where a concept of a context does not
make sense in the other context. On the other hand, the en-
tity must be totally mapped on both contexts: all concepts
of the entity must be understood in both contexts.

Context Integration. (Figure 2-B) When a single entity
EMed has more than one context (C1 and C2) : C1 ←
EMed → C2, the context integration produces a new context
C, to which C1 and C2 are linked: C1 → C ← C2. This new
context combines information of C1 and C2 preserving the
coherence with the entity EMed. The integration performs
the amalgamated union of contexts, collapsing components
that are related by the alignment C1 ← EMed → C2. The
result contains all information of the original contexts, but
identifies parts related by the mediator entity. As the oper-
ation is guided by ontology links, structure, relations, and
axioms of the mediator entity are preserved.

Collapsed Union. (Figure 2-C) Is the amalgamated union
of two contextualized ontologies mediated by a third contex-
tualized ontology. It is the combined composition of entities
and contexts, where the ontology links ensures the preser-
vation of structure, relations, and axioms of each ontology
and coherence of each entity with respect to contexts. It pro-
duces a new contextualized ontology with all components of
the original ones, but collapsing components that have the
same source in the mediator.

Coalignment. (Figure 3-A) It is a mechanism of establish-
ing a correspondence between vocabularies of two ontologies
by the use of an intermediate target ontology. It configures
a binary relation between the two ontologies, where related
components are those that are mapped in the same compo-
nent of the intermediate target. Concerning contextualized
ontologies, a situation where two entities share the same
context is a coalignment: E1 → CMed ← E2. By defining a
binary relation, the coalignment makes possible the partial
mapping between entities, what means that not all concepts
of one entity make sense in the other entity. Both entities,
however, must be totally mapped in the context.

Entity Integration. (Fig. 3-B) Is the integration of entities
(E1 and E2) that share the same context: E1 → CMed ←
E2. The integration has the context as mediator. The result
is a new entity (E) contextualized by the original ones (and
by transitivity, by the original context CMed). The entity
integration performs the semantic intersection of the entities
under the mediation of the context, that is, the new entity
will embody all, and nothing more than, information of the
original entities that are related by the coalignment E1 →

CMed ← E2. As the operation is guided by ontology links,
structure, relations, and axioms are preserved.

Relative Intersection. (Figure 3-C) Is the intersection of
two contextualized ontologies mediated by a third contex-
tualized ontology. It is the combined intersection of entities
and contexts, where the ontology links ensure the preser-
vation of structure, relations, and axioms of each ontology
and coherence of each entity with respect to its context. It
produces a new contextualized ontology having just the com-
ponents of the originals that are mapped in the mediator.

3. A SPECIFICATION ENVIRONMENT
In [3] we adopted a scenario to be formalized and to il-

lustrate the operations of the algebra. In this paper we use
the same scenario to illustrate the proposed environment,
showing how the diagrams of the algebra can be constructed
in different levels of abstractions. In subsection 3.1 we de-
scribe the scenario. In subsections 3.2 and 3.3 we describe
the modules and their connections, using the scenario as
running example.

3.1 The Scenario
We consider two universities in Rio de Janeiro, Brazil,

PUC-Rio and UFF, which are collaborating in some research
projects, e.g. the UbiForm Project. Silva is a professor and
researcher who works at the CS Department of PUC-Rio,
and is also participating in the UbiForm Project. Silva car-
ries with him his smart phone, which host some context-
aware applications that respond to different situations, ac-
cording to his preferences and to environment conditions.

When he arrives at PUC-Rio, an Ambient Management
Service (AMS) registers his smart phone (SMPSilva) and
detects that it belongs to him. The system verifies that
Silva works there as a professor and sets his workspace. The
Ubiform Project Agenda (UPA), a service of AMS, informs
the members of UbiForm Project the about Silva’s arrival.
A Personal Agenda application running on SMPSilva con-
tacts UPA with a request to be notified about the beginning
of each event involving the whole project team, based on the
project schedule and the location. Another application on
SMPSilva, a Configuration Management Service (CMS), re-
quests to be notified whenever Silva is in a room in which an
activity (e.g. a technical presentation, a brainstorm session)
has started, so that it may set the smart phone to blocked
mode, and as soon as the activity ends, switch it back to
the ring mode. But if Silva’s wife sends him a message dur-
ing the meeting, the phone should vibrate, so that he can
discreetly check the message’s subject.

From this example, we may see that the ubiquitous ser-
vices described above rely on a wide variety of context in-
formation to trigger their actions. While the Ambient Man-
agement Service and the Personal Agenda must be aware of
the context information that describes Silva’s role and lo-
cation in the organization, the Configuration Management
Service also takes into consideration Silva’s personal prefer-
ences. Thus, we notice that the context that fully describes
the user Silva comprises not only the context that describes
his role at PUC-Rio (location of Silva and his device in the
organization), or in the UbiForm Project (schedule of activ-
ities), but also the context that describes Silva’s personal
preferences and features (the vibration mode to alert about
Silva’s wife message). When Silva is at home or somewhere
else — e.g. at an Airport —, the Configuration Management

Figure 4: Overview of the environment for design
and implementation of ubiquitous systems.

Service will be immersed in an different overall context. In
such cases, formalization may help to describe and under-
stand how different contexts form a specific combined view.

Let’s assume that at a certain time Silva is visiting UFF
with several other researchers and, as usual, he carries with
him his smart phone running the same context-aware ser-
vices. Their purpose is to have joint workshops about the
collaboration project. When Silva arrives at UFF, the Wi-Fi
and GPS enables SMPSilva to connect to the network, and
using the current GPS data, queries a location service to
find out that its owner (Silva) is at UFF. It then determines
that this university is a partner institution of PUC-Rio; ob-
tains the IP address of the AMS at UFF and registers with
it, indicating the user’s identity and preferences. The Ambi-
ent Management Service registers SMPSilva and identifies
that the device belongs to Silva, a visiting professor from
PUC-Rio. The system verifies that Silva is involved with the
collaboration project and sets a workspace for him. Notice
that when the Personal Agenda and the Configuration Man-
agement Service interact with the Ambient’s local context
provider at UFF, although Silva is identified as a visitor at
that institution, he can still be perceived as a professor from
PUC-Rio. Hence, supposing that only professors can have
access to printers at UFF, when setting Silva’s workspace,
AMS will recognize this access permission and configure the
printer setup utility at his operating system to use the lo-
cally available printers. In addition to this, suppose that
AMS would make available to Professor Silva the publica-
tions of UFF which are related to his production. For this,
AMS should also be aware of Professor Silva’s production,
i.e. list of publications.

3.2 The Modules
The environment of ubiquitous systems design and imple-

mentation is composed by the following modules as shown
in figure 4:
Diagram of Devices and Applications. The diagram of de-
vices and applications specify all computational devices (pieces
of software/hardware) that compose the ubiquitous system
and the kind of information that is exchanged among them.
Each device of an ubiquitous systems is represented by a
node of the diagram, which is linked to other nodes by an
arrow labelled with the information that is to be transmitted
from a device or application to another. Examples of devices
and applications are a mobile phone and a personal agenda,
which can exchange information as, for example, the date of
a meeting.

Example 2. We show in figure 5 a simple diagram of
devices that considers several devices: the Ambient Manage-

ment Service (AMS) that detects the presence of a person
carriyng a smart phone and registers its code; the Ubiform
Project Agenda (UPA), that informs the members of Ubi-
Form Project the arrival of a member; the Configuration
Management Service (CMS), that, when receiving a signal
from AMS, configures the phone mode to silence or vibra-
tion if the user is in an activity room; a Personal Agenda
(PA), that contacts a project schedule and signals the user
the beginning of an activity, and, finally, smart phones and
workspaces.

Diagram of Entities. The entities of an ubiquitous system
are components that produce a reaction. For example, a
Professor, that must be identified when arriving at work is
an entity. In this situation, the device that captures the pres-
ence of the professor is the context wherein the professor is
emmersed at that time. But a context is also an entity, as it
certainly produces a reaction in another device. The algebra
of contextualized entities gives strong support on this flex-
ibility of changing role: adopting a uniform representation
for entity and context, and also because links compose asso-
ciatively, one context can act as entity of a different context.
This latter acts as (meta) context of the entity. It is also
possible for an entity to have several contexts (several links
with the same domain) or for a context to contextualize sev-
eral entities (several links with the same codomain). These
situations can be extended indefinitely forming a net of enti-
ties and contexts, that together provide an understanding of
an object or situation. The algebra of contextualized entities
formalizes the manipulation of entities providing operations
to generate new entities wherein the devices can extract the
necessary information to work on.

Example 3. Figure 6 is part of a diagram of entities that
relates personal information of Professor Silva (in the ontol-
ogy Silva) with his physical position at PUC-Rio, as a mem-
ber of UbiForm Project (in the ontology UbiForm Project).

Annotation pane. The annotations can be defined, deleted
or associated to different components of diagrams or code
during the process of specification.

Example 4. According to the scenario, the diagram of
entity of figure 6 is related to the fact that if Silva’s wife
sends him a message during the meeting, the phone should
silently vibrate. This condition, that will appear in the whole
description, as an axiom of the diagram of ontologies can be
annotated while spcifying the diagram of entities to not be
forgotten later. The annotation could be:

Figure 5: A diagram of devices.

Device(SMPSilva) ∧ isLocatedIn(?d,?r) ∧ inActivity(?r) ∧
PersonCalling(?p) ∧ isWife(?p,“Silva”) ⇒
setVibrate(SMPSilva)

Diagram of Ontologies. The diagram of ontologies provides
a detailed view of the diagram of entities, where each entity
is described by an ontology and the links are consistently de-
fined. In the algebra, a link is consistently defined if it maps
components of the entity (domain ontology) into the context
(codomain ontology) in a way that the hierarchy of concepts
and relations of the entity are reflected in the codomain, and
the axioms of the entity, when properly translated to the vo-
cabulary of the context, hold for the context.

Example 5. We consider a situation in which informa-
tion coming from one context enables decisions about an en-
tity in a different context. For instance, Professor Silva is
allowed to use the printer at UFF as a consequence of the
fact that, at PUC, he is a professor. AMS also makes avail-
able to Professor Silva the publications of UFF which are
related to his production. The permission to print could be
represented as an annotation that would set an access per-
mission in a ubiquitous regulation service, such as in [9]:

Person(?p) ∧ worksAt(?p,“PUC-Rio”) ∧
playsRole(?p,“Professor”) ⇒ hasAccess(?p,“Printer”)

Considering the base square of the diagram of entities in
Fig. 12, the mediator Prof. Silva of the context integration

UFF
AMS←− Prof. Silva

AMS−→ PUC must capture the fact
that Silva is a professor and properly map this information
into the ontology of UFF. Figure 7 depicts the ontology for
UFF and PUC and shows this alignment. Note that, as the
concept Professor at PUC is related to Researcher at UFF,
the relation hasAccess(?p,?d) will hold for Professor Silva
and Printer in the resulting context (in Fig. 8). Also, note
that, in this resulting context information about Professor
Silva’s production is available to be used by AMS.

3.3 Relating the Modules
The modules described above are related in the following

way: each device of the diagram of devices correspond to
a diagram of entities, for example, figures 11 and 12 show
steps of the construction of the diagram of entities for AMS,
a device of figure 5. But, in the diagram of entities, details
of entities and their connection are hidden. These details
appear in the diagram of ontologies, where entities speci-
fications and their connections are sufficiently detailed in
order to make possible consistency tests. Respecting this
correspondence the annotation pane is able to relate an an-
notation in a diagram to the corresponding component in

Figure 6: Diagram of entities: CMS considers per-
sonal information about Silva and his physical posi-
tion at the UbiForm.

Figure 7: Diagram of ontologies: Alignment of UFF
and PUC under the mediation of Prof. Silva. The
mediator captures the fact that Silva is a professor
and properly map this information in the ontology
of UFF.

each of the other diagrams. Moreover, the process of speci-
fication can be performed on the three windows of diagrams
concurrently such that a change in a window may produce
effects on the other two. At the same time, annotations
associated to components of the diagrams can be made at
any time. These annotations can be accessed from the re-
lated components of the other diagrams or from the related
portion of the generated code.

For the sake of simplicity, we describe the process of spec-
ification in linear way.

Starting by the definition of the diagram of devices, which
presents the higher level of abstraction, the user sketches the
flow of information among the several devices that compose
the system. When inserting a device in the transition di-
agram, a double click in the mouse transfers the user to
the diagram of entities of that device. In this diagram, the

Figure 8: Diagram of ontologies: The context in-
tegration of the alignment of figure 7. The rela-
tion hasAcces(Researcher, Printer) holds for Profes-
sor Silva and Printer and information about Profes-
sor Silva’s production is avaiable.

Figure 9: Diagram of devices: Professor Silva at the
airport.

Figure 10: Diagram of devices: Professor Silva at
UFF.

user constructs the body of information over which the de-
vice must work. A diagram of ontologies for each entity
of the diagram of entities can be generated as long as in-
formation is being added to the diagram of entities, guided
by the algebra of contextualized entities. Additional infor-
mation to complete ontologies and ontology links may be
inserted in a latter moment, and validation of links can be
semi-automatically done. From the diagram of ontologies
it is possible to derive a partial code in OWL or a similar
language.

4. A CASE STUDY ON UBIQUITOUS COM-
PUTING

We present an overview of the formalization of the sce-
nario presented in 3.1. Since the whole formalization would
exceed the space limit, the objective of this section is just
to give an idea of the integration between the diagrams that
are constructed in each module.

4.1 Diagrams of Devices
Figures 5, 9 and 10 compose the diagram of devices of

the scenario described in subsection 3.1. As commented in
example 3, figure 5 shows AMS, CMS, UPA and PA that
interchange information as a result of the perception of the
presence Professor Silva. Two of these devices are applica-
tions running on Silva’s smart phone: the CMS, that config-
ures the phone mode to silent, alarm or vibration according
to the room or activity where Professor Silva is engaged,
and PA, a personal agenda that must be synchronized with
the project agenda. The other two devices (AMS and UPA)
are applications running at the environment and play the
role of monitoring information about the environment and
notifying the SMP applications. Figure 5 pictures the ex-

Figure 11: Diagram of entities: Integration of sev-
eral professors.

changing of information concerning the second paragraph of
subsection 3.1, when Professor Silva arrives at PUC.

In figure 9 we consider just AMS (running at the airport)
and CMS (running on Professor Silva’ smart phone) and
formalize the situation where there is no restriction to the
phone alarm, thus the phone configuration must be restored.

Finally, as in the fourth paragraph of subsection 3.1, we
picture, in figure 10, the diagram of devices that formal-
ize the arrival of Professor Silva at UFF. In this case, it
is performed a communication between AMS, at PUC, and
AMS at UFF, via GPS/WiFi. Through this communica-
tions, Professor Silva is recognized at UFF and resources
can be allocated according to his preferences and permis-
sions.

4.2 Diagrams of Entities
This diagram will compose a coherent and minimal body

of information over which the device must work. For ex-
ample, for AMS it is necessary to combine personal and
professional information of Professor Silva in order to use
personal preferences to configure professional environment.

The Ambient Management Service (AMS). Figure
11 concern the situation where AMS informs other members
of Silva’s team about his arrival. For any member Profi, a

context integration i
AMS←− PUC

AMS−→ Profi (Silva
AMS←−

PUC
AMS−→ i) is generated resulting the ontology Profi at

PUC (Silva at PUC), that combines personal and profes-
sional information for each i. The entity integration of each
Profi and Prof Silva under the context of PUC (lower
square of figure 11) will make the connection among the i
professors of PUC and Professor Silva. Over this ontology,
AMS has access to the integrated information about all pro-
fessors.

Later, Professor Silva is visiting UFF, where he is regis-
tered as a visitor researcher. Within the context
SilvaAtUFF that results from integration

Silva
AMS←− Prof.Silva

AMS−→ UFF , AMS can properly set
the professor’s workspace. But some of Silva’s permissions
for the use of resources come from the fact that he is a Pro-
fessor at PUC. Thus, information about Silva’s status at
PUC must also be taken into account. The context integra-

tion UFF
AMS←− Prof.Silva

AMS−→ PUC generates a context
where AMS can find information about Silva as a PUC pro-
fessor and as a UFF visitor researcher in the joint project
UFF/PUC (base square of Figure 12). The context integra-

tion SilvaAtUFF
AMS←− Silva

AMS−→ SilvaAtPUC generates
a context where AMS can find not only information about
Silva as a PUC professor or as a UFF visitor researcher, but
also personal information about Silva (top square of Figure

Figure 12: Diagram of entities: Each face of the cube
shows a context integration. The complete cube is
the collapsed union of the contextualized entities
UFF → SilvaAtUFF , PUC → SilvaAtPUC mediated
by Prof.Silva→ Silva.

Figure 13: Diagram of entities: Entity Integration
that results in the synchronization of several smart
phones Personal Agendas with respect to the Ubi-
Form Project Agenda.

12). Note that Figure 12 also pictures a combined inte-
gration: the collapsed union of the contextualized entities
UFF → SilvaAtUFF , PUC → SilvaAtPUC mediated by
Prof.Silva→ Silva.

The Personal Agenda (PA). The personal agenda of
Silva’s smart phone contacts the UbiForm Project Agenda to
be notified about scheduled activities. The entity integration

Prof Silva
PA−→ UbiFormProject

PA←− Profi embodies the
synchronization of the professors’ agendas with respect to
the UbiForm Project agenda. In the resulting ontology the
Personal Agenda can process information about events in
which all professors i and Silva take part (figure 13).

The Configuration Management Service (CMS).
The configuration management service requests the Ubi-
Form Project Agenda to be notified when any activity is
about to start. AMS is aware of the location of Professor
Silva at PUC, and hence of his presence in a room where a
project activity is taking place. It also considers Silva’s per-
sonal information in order to properly configure his phone
alarm.

A context integration UbiFormProject
CMS←− Prof. Silva

CMS−→ Silva results in a context SilvaAtUbiForm which com-
bines personal information about Silva and the present Ubi-
Form activity in which he is involved (figure 6). Similar sit-
uation occurs when Silva is somewhere else, e.g. as at the air-

port. The context integration Airport
CMS←− Prof.Silva

CMS−→

Figure 14: Diagram of ontologies: The coalignment
of SMP of Professor i and SMP of Professor Silva
with respect to the agenda of the UbiForm Project.

Silva results in the context SilvaAtAirport wherein the
CMS can configure his phone alarm according to his con-
textual preferences.

4.3 Diagrams of Ontologies
The diagrams of ontologies are a refinement of the dia-

grams of entities, were each entity appears described as an
ontology and the connections are links between ontologies
(that is, they preserve ontology properties).

Detailed description of the whole scenario would exceed
the space limitation and is not the objective of this section.
In example 5 we showed how diagram of ontologies preserve
structure and relations. In this section we selected a dia-
grams of entities to illustrate how the integration can filter
information in order to affect just a selected set of entities.
We consider the situation, where the Personal Agenda of
Silva’s smart phone contacts the UbiForm Project Agenda
to be notified about events.

Diagram of Fig. 13 pictures this situation, showing the
integration of SMP of Professor i and SMP of Professor Silva
under the context of the UbiForm Project. Figure 14 shows
the coalignment of SMP of Professor i and SMP of Professor
Silva with respect to the context of the UbiForm Project.
Figure 15 shows the resulting entity, in which appears only
the events that both take part.

Figure 15: Diagram of ontologies: Integration of
agendas: Silva and Professor i will be present at
Event 2.

5. CONCLUSION
This paper proposes an environment to support the use of

the algebra of contextualized ontologies for the specification
context modelling in ubiquitous systems. The algebra is de-
signed to reduce the gap between a system’s implementation
and formalization, so as to minimize some difficulties faced
by programmers when writing formal specifications. The
environment is designed to highlight and make available to
the programmer all the facilities of the algebra, which is
based on the principle of an homogeneous and independent
description of entities and contexts and a representation of
their semantics as a network of relationship. The algebra
adopts ontologies to represent entities and contexts and the
links between an entity and a context are the ones that in-
form, in each particular situation, which ontology plays the
role of an entity (i.e. the domain of the link) and which on-
tology plays the role of context (i.e. the codomain of the
link). Since the links of the network compose associatively,
a context can act as an entity of a wider context, which thus
plays the role of a meta-context of the former context. It is
also possible for an entity to have several contexts (several
links with the same domain) or for a context to contextual-
ize several entities (several links with the same codomain).
Such relationships can be extended arbitarily, forming a net-
work of entities and contexts, which, as a whole, provide an
understanding of an object or situation.

The environment emphasises these features by splitting
the algebra in several levels of abstractions, each one rep-
resented by specific diagrams. These multiple levels of ab-
stractions are integrated and can be modified at any time.
Annotations can be associated to elements of one diagrams,
and then, through transformations, can be propagated and
refined according to the level of abstraction of each diagram.
These features were shown through an example of a ubiqui-
tous computing application.

The operations of the algebra of contextualized entities
serve the purpose of co-relating and integrating information
among several levels of a system’s representation. The ulti-
mate goal is to be able to construct a complete and minimal
description of a system upon which a component of an ubiq-
uitous system can reason.

6. REFERENCES

[1] I. Cafezeiro and E. H. Haeusler. Semantic
interoperability via category theory. Conferences in
Research and Practice in Information Technology,
83:519–533, 2006.

[2] I. Cafezeiro and E. H. Haeusler. Ontology and Context.
In Proceedings of the Sixth Annual IEEE International
Conference on Pervasive Computing and
Communications (PerCom), pages 417–422, 2008.

[3] I. Cafezeiro, J. Viterbo, A. Rademaker, E. H. Haeusler,
and M. Endler. A formal framework for modeling
context-aware behavior in ubiquitous computing. 3rd
International Symposium on Leveraging Applications of
Formal Methods, Verification and Validation. CCIS:
Leveraging Applications of Formal Methods,
Verification and Validation, 17, 2008.

[4] H. Ehrig and B. Mahr. Fundamentals of Algebraic
Specification 1: Equations and Initial Semantics.
Springer-Verlag, 1985.

[5] E. H. Haeusler and J. Meseguer. MEFIA Protem/NSF :
Mathematical and Engeneering Foundations for
Interoperability via Architecture. Technical report,
PUCRio, S.R.I International, 2000.

[6] C. Julien and G.-C. Roman. Egocentric context-aware
programming in ad hoc mobile environments. In
SIGSOFT ’02/FSE-10: Proceedings of the 10th ACM
SIGSOFT symposium on Foundations of software
engineering, pages 21–30, New York, NY, USA, 2002.
ACM.

[7] Y. Kalfoglou and M. Schorlemmer. Ontology mapping:
The state of the art. In Y. Kalfoglou, M. Schorlemmer,
A. Sheth, S. Staab, and M. Uschold, editors, Semantic
Interoperability and Integration, number 04391 in
Dagstuhl Seminar Proceedings. Internationales
Begegnungs- und Forschungszentrum fuer Informatik
(IBFI), Schloss Dagstuhl, Germany, 2005.
<http://drops.dagstuhl.de/opus/volltexte/2005/40>
[date of citation: 2005-01-01].

[8] A. Lopes and L. Fiadeiro. Context-awareness in
software architectures. In EWSA 2005: Proocedings of
the 2nd European Workshop in Software Architecture.
Springer-Verlag, 2005.

[9] J. Viterbo, M. Endler, and J.-P. Briot. Ubiquitous
service regulation based on dynamic rules. In
Proceedings of the 13th IEEE International Conference
on Engineering of Complex Computer Systems
(ICECCS 2008), Belfast, pages 175–182. IEEE
Computer Society Press, 2008.

